A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?

For this question, we will use moments. A moment is defined as:Moment = force x perpendicular distance from pivotHere, the moment of the 30kg mass which acts anti-clockwise through the pivot. The moment is:M30kg = 30g x 5mThe force is 30g as F=ma with g being the acceleration under gravity. The perpendicular distance is 5m as the beam is pivoted in the centre and the mass is placed at the end of the beam.The moment of the 50kg mass is:M50kg = 50g x DWhere D is the distance from the pivot. Since we know for the beam to be balanced, the clockwise moment must be equal to the anti-clockwise moment, we can say:M30kg = M50kg30g x 5 = 50g x DWe can cancel out the g factor as it is present on both sides of the equation.30 x 5 = 50 x DD = (30 x 5)/50 = (30 x 1)/5 = 3mSo the mass must be placed 3m from the pivot which is also 8m from the end which the 30kg mass is placed on.

JM
Answered by Joseph M. Physics tutor

3096 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the length of a 120m (as measured by the astronaut) spaceship travelling at 0.85c as measured by a stationary observer


The tip of each prong of a tuning fork emitting a note of 320Hz vibrates in SHM with an amplitude of 0.50mm. What is the speed of each tip when its displacement is zero?


The energy of a photon is 1.5MeV. Calculate the frequency associated with this photon energy and state an appropriate unit in your answer.


A light is shone through a diffraction grating of slit spacing 4.5x10^5 lines per metre. The incident wavelength is 650nm. Find the angle produced by the incident light and the 2nd order maximum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning