Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n

We make use of De Moivre's Theorem which states that (cos(θ)+isin(θ))^n=cos(nθ)+isin(nθ).z^n-1/z^n=cos(nθ)+ isin(nθ)-cos(-nθ)- isin(-nθ)=cos(nθ)+ isin(nθ)-cos(nθ)+ isin(nθ) (by trig relationships)=2isin(nθ)Similarly z^n+1/z^n=cos(nθ)+ isin(nθ)+cos(-nθ)+isin(-nθ)=cos(nθ)+ isin(nθ)+cos(nθ)- isin(nθ) (by trig relationships)=2cos(nθ)

BS
Answered by Bogosi S. Further Mathematics tutor

4360 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


What is the meaning of having a 3 by 3 matrix with determinent 0. Both geometrically and algebriaclly.


Show, using de Moivre's theorem, that sin 5x = 16 sin^(5) x - 20 sin^(3) x + 5 sin x 


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences