Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n

We make use of De Moivre's Theorem which states that (cos(θ)+isin(θ))^n=cos(nθ)+isin(nθ).z^n-1/z^n=cos(nθ)+ isin(nθ)-cos(-nθ)- isin(-nθ)=cos(nθ)+ isin(nθ)-cos(nθ)+ isin(nθ) (by trig relationships)=2isin(nθ)Similarly z^n+1/z^n=cos(nθ)+ isin(nθ)+cos(-nθ)+isin(-nθ)=cos(nθ)+ isin(nθ)+cos(nθ)- isin(nθ) (by trig relationships)=2cos(nθ)

BS
Answered by Bogosi S. Further Mathematics tutor

5061 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using a Taylor's series or otherwise; derive Euler's Formula


A complex number z has argument θ and modulus 1. Show that (z^n)-(z^-n)=2iSin(nθ).


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


Simplify (2x^3+8x^2+17x+18)/(x+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning