Answers>Maths>IB>Article

Differentiate y = e^(x^2 - 3x).

This question is an example of the chain rule for differentiating. 

Firstly, identify the inner function. In this case, it is x- 3x. This function must be differentiated first:

d/dx (x2 - 3x) = 2x - 3

Secondly, identify the outer function. In this case, it is ez, where z = x2 - 3x. This function must be differentiated second:

d/dz (ez) = e 

The final differentiated result is the derivative of the inner function multiplied by the derivative of the outer function:

dy/dx = (2x - 3)e= (2x - 3)ex^2 - 3x

ES
Answered by Ellie S. Maths tutor

12857 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

f(x)=(2x+1)^0.5 for x >-0.5. Find f(12) and f'(12)


IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.


Solve: 1/3 x = 1/2 x + (− 4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning