Answers>Maths>IB>Article

Differentiate y = e^(x^2 - 3x).

This question is an example of the chain rule for differentiating. 

Firstly, identify the inner function. In this case, it is x- 3x. This function must be differentiated first:

d/dx (x2 - 3x) = 2x - 3

Secondly, identify the outer function. In this case, it is ez, where z = x2 - 3x. This function must be differentiated second:

d/dz (ez) = e 

The final differentiated result is the derivative of the inner function multiplied by the derivative of the outer function:

dy/dx = (2x - 3)e= (2x - 3)ex^2 - 3x

ES
Answered by Ellie S. Maths tutor

12351 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

All tickets for a concert are the same price. Amy and Dan pay £63 for some tickets. Amy pays £24.50 for 7 tickets. How many tickets does Dan buy?


A sequence of numbers have the property that x, 12, y, where x > 0, y > 0, form a geometric sequence while 12, x, 3y form an arithmetic sequence. A)If xy = k, find k. B)Find the value of x and y.


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


Solve the equation sec^2 x+ 2tan x = 0, 0 ≤ x ≤ 2π. IB May 2017 Exam


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning