Why do first ionisation energies decrease down a group but increase across a period?

The nucleus contains positively charged protons which attract the negative electrons, the first ionisation energy is the energy required to overcome this attraction and remove 1 electron As you go down a group the number of shells containing electrons increases. This means that as you go down the group the outermost electron is further and further away from the positive nucleus, it also has more electrons between it and the nucleus so it is therefore shielded from the positive charge of the nucleus. This leads to less strong electrostatic interaction with the nucleus so less energy is needed to remove the electron.
As you go across a period the number of protons in the nucleus (known as the effective nuclear charge) increases. However the number of shells with electrons in doesn't change. Therefore, as you go across a period and the nuclear charge increases the electrons will be more tightly held by the nucleus (greater electrostatic interaction) and so it will be harder to remove one - it will require more energy giving a higher ionisation energy.

AM
Answered by Amy M. Chemistry tutor

2112 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

A white substance is placed on the table in front of you, explain what methods/techniques you could use to determine what compound the substance is


What is electronegativity?


Explain how pH changes can be minimised using a mixture of a weak acid and it's conjugate base


Aminoethane can be prepared by a reduction reaction. Identify a starting compound that can be used to prepare aminoethane by reduction, give the necessary reagent and write an equation for the reaction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning