Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n

To prove this we must use a neat mathematical technique called induction.

Induction works in the following way: If you show that the result being true for any integer implies it is true for the next, then you need only show that it is true for n=1 for it to be true for n=2 and then n=3 and so on.

Step 1: Show true for n=1

For n=1, n^3+2n=(1)^3+2(1)

n^3+2n=3

3 is definitely divisible by 3 so the statement is true for n=1.

Step 2: Assume true for n=k

We assume that for any integer k, n^3+2n is divisible by 3. We can write this mathematically as:

k^3+2k=3m, where m is an integer

Step 3: Show true for k+1

For n=k+1,

n^3+2n=(k+1)^3+2(k+1)

=(k^3+3k^2+3k+1)+2k+2

=(k^3+2k)+3(k^2+k+1)

Subbing in from part 2 for (k^3+2k), we get:

n^3+2n=3m+3(k^2+k+1)

=3(m+k^2+k+1)

which is divisible by 3.

 

This means that the statement being true for n=k implies the statement is true for n=k+1, and as we have shown it to be true for n=1 the proof of the statement follows by induction.

JS
Answered by James S. Further Mathematics tutor

125995 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the meaning of having a 3 by 3 matrix with determinent 0. Both geometrically and algebriaclly.


A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.


Split x^4/[(x^2+4)*(x-2)^2] into partial fractions and hence differentiate it


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning