Given g(x) = 4* sin (3*x), find the value of g'(pi/3).

Using the table of standard derivatives given at the beginning of the Higher Paper we have, for f(x) = sin(ax), f'(x) = a * cos (ax)and so with this we have, g(x) = 4 * sin(3x), g'(x) = 4 * 3 * cos(3x) = 12 * cos(3x).Evaluating g'(x) at x = pi/3 we have, g'(pi/3) = 12 * cos (3(pi/3)) = 12 * cos(pi) = 12 * (-1) = -12.

RM
Answered by Romy M. Maths tutor

977 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Express '2x^2 + 8x + 30' in the form 'a(x+b)^2 + c'


Evaluate log_6(12)+(1/3)log_6(27)


Solve algebraically the system of equations: 4x+5y=-3 and 6x-2y=5


Differentiate 5x^2 - 7x +9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences