Given g(x) = 4* sin (3*x), find the value of g'(pi/3).

Using the table of standard derivatives given at the beginning of the Higher Paper we have, for f(x) = sin(ax), f'(x) = a * cos (ax)and so with this we have, g(x) = 4 * sin(3x), g'(x) = 4 * 3 * cos(3x) = 12 * cos(3x).Evaluating g'(x) at x = pi/3 we have, g'(pi/3) = 12 * cos (3(pi/3)) = 12 * cos(pi) = 12 * (-1) = -12.

RM
Answered by Romy M. Maths tutor

1039 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Solve log_2(3x + 7) = 3 + log_2(x – 1), x > 1.


Find the x-coordinates of the stationary points on the graph with equation f(x)= x^3 + 3x^2 - 24x


dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


Differentiate (with respect to x), y=2x^2+8x+5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning