Given g(x) = 4* sin (3*x), find the value of g'(pi/3).

Using the table of standard derivatives given at the beginning of the Higher Paper we have, for f(x) = sin(ax), f'(x) = a * cos (ax)and so with this we have, g(x) = 4 * sin(3x), g'(x) = 4 * 3 * cos(3x) = 12 * cos(3x).Evaluating g'(x) at x = pi/3 we have, g'(pi/3) = 12 * cos (3(pi/3)) = 12 * cos(pi) = 12 * (-1) = -12.

RM
Answered by Romy M. Maths tutor

1073 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

what is 87% of 654


A triangle has vertices A(-3,5), B(7,9) and C(2,11). What is the equation of the median that passes through the vertex C?


a) Factorise: 2x^2-72, and hence b) find the y-intercept of the line with the equation: y=(2x^2-72)/(4x-24)


Find the x-coordinates of the stationary points on the graph with equation f(x)= x^3 + 3x^2 - 24x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning