Given g(x) = 4* sin (3*x), find the value of g'(pi/3).

Using the table of standard derivatives given at the beginning of the Higher Paper we have, for f(x) = sin(ax), f'(x) = a * cos (ax)and so with this we have, g(x) = 4 * sin(3x), g'(x) = 4 * 3 * cos(3x) = 12 * cos(3x).Evaluating g'(x) at x = pi/3 we have, g'(pi/3) = 12 * cos (3(pi/3)) = 12 * cos(pi) = 12 * (-1) = -12.

RM
Answered by Romy M. Maths tutor

1152 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


Solve log_2(3x + 7) = 3 + log_2(x – 1), x > 1.


Calculate the rate of change of d(t )=2/(3t), t ≠ 0, when t=6.


log_a(36) - log_a(4) = 0.5, what is a?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning