Answers>Maths>IB>Article

What is the area enclosed by the functions x^2 and sqrt(x)?

First, let's see how the plot of the functions looks like (draw on whiteboard). Next, let's calculate where the functions intersect by setting x2 = sqrt(x) and solving for x (manipulate by squaring both sides and get x4=x and combine to form x(x3-1)=0 which gives x=0 or 1). Finally, find the area by integrating the difference of the functions between these two points (integral from 0 to 1 of sqrt(x)-x2 dx = [2/3 x3/2 -1/3 x3] evaluated from 0 to 1 = 2/3-1/3 = 1/3). Therefore, the area enclosed by the functions x^2 and sqrt(x) is 1/3.

Answered by Maths tutor

1461 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

When the polynomial 3x^3 +ax+ b is divided by x−2 , the remainder is 2, and when divided by x +1 , it is 5. Find the value of a and the value of b.


How do I integrate the volume of revolution between 0 and pi of y=sin(x)?


Given the parametric equations x = lnt+t and y = sint calculate d^2y/dx^2


Solve the equation log2(x + 3) + log2(x - 3) = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning