Answers>Maths>IB>Article

What is the area enclosed by the functions x^2 and sqrt(x)?

First, let's see how the plot of the functions looks like (draw on whiteboard). Next, let's calculate where the functions intersect by setting x2 = sqrt(x) and solving for x (manipulate by squaring both sides and get x4=x and combine to form x(x3-1)=0 which gives x=0 or 1). Finally, find the area by integrating the difference of the functions between these two points (integral from 0 to 1 of sqrt(x)-x2 dx = [2/3 x3/2 -1/3 x3] evaluated from 0 to 1 = 2/3-1/3 = 1/3). Therefore, the area enclosed by the functions x^2 and sqrt(x) is 1/3.

Answered by Maths tutor

1216 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let f(x)=x^2-ax+a-1 and g(x)=x-5. The graphs of f and g intersect at one distinct point. Find the possible values of a.


Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


How do I integrate the volume of revolution between 0 and pi of y=sin(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning