Answers>Maths>IB>Article

What is the area enclosed by the functions x^2 and sqrt(x)?

First, let's see how the plot of the functions looks like (draw on whiteboard). Next, let's calculate where the functions intersect by setting x2 = sqrt(x) and solving for x (manipulate by squaring both sides and get x4=x and combine to form x(x3-1)=0 which gives x=0 or 1). Finally, find the area by integrating the difference of the functions between these two points (integral from 0 to 1 of sqrt(x)-x2 dx = [2/3 x3/2 -1/3 x3] evaluated from 0 to 1 = 2/3-1/3 = 1/3). Therefore, the area enclosed by the functions x^2 and sqrt(x) is 1/3.

Answered by Maths tutor

1458 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation sec^2(x) - 4tan(x)= -3 , 0 ≤x≤ 2π


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


When finding single or multiple probabilities using the binomial distribution on the calculator, which function do I use respectively?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning