prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.

With induction we start with the base case n = 1. So setting n=1 we find that f(1) = 391 which is equal to 17x23. So indeed the base case holds.We assume that for positive integers k, f(k) is divisible by 17. We now seek to show that f(k+1) is also divisible by 17 and we can use the assumption that f(k) is. In this question it would seem smart to start with an expression of f(k+1).f(k+1) = 23(k+1)+1 + 3(52(k+1)+1)We will now try to manipulate this expression using index laws. We see that,f(k+1) = 23k+4 + 3(52k+3) = 2323k+1 + 3(5252k+1) = 8x23k+1 + 3x25x52k+1 = 8f(k) + 17x3(52k+1)We have manipulated our expression to find that f(k+1) is divisible by 17 since we can assume f(k) is.So given any positive integer k we know that f(k+1) is divisible by 17. Since we showed in our base case that f(1) is divisible by 17 it follows that f(n) is divisible by 17 by induction for all positive integers n.

MB
Answered by Matt B. Further Mathematics tutor

10070 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning