Answers>Maths>IB>Article

Solve the equation log(1-x) - log(x) = 1 where log() is the logarithmic function, base 10.

From the rules of logarithms, we know that:

log(A) - log(B) = log(A/B)

and thus:

log(1-x) - log(x) = log[(1-x)/x]

Therefore from the question, we know:

log[(1-x)/x] = 1

If we then take both sides of the equation as a power of 10:

(1-x)/x = 10^1

and then multiply both sides through by x:

1-x=10x

Solving for x:

1=11x

x=1/11

We can check our answer by inserting it into the original equation:

log(1-x) - log(x) = log[1-(1/11)] - log[1/11]

and using the rule log(A) - log(B) = log(A/B):

log[1-(1/11)] - log[1/11] = log(10/11)-log(1/11)

= log[(10/11)/(1/11)]

= log(10)

= 1

Thus we know x=1/11

JD
Answered by Joshua D. Maths tutor

21469 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Having x(x+4)=y, calculate dy/dx


Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.


How do you integrate xln(x) between the limits of 0 and 2?


Identify and classify the stationary points of f using the second derivative test, where f is the function given below


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences