Answers>Maths>IB>Article

Solve the equation log(1-x) - log(x) = 1 where log() is the logarithmic function, base 10.

From the rules of logarithms, we know that:

log(A) - log(B) = log(A/B)

and thus:

log(1-x) - log(x) = log[(1-x)/x]

Therefore from the question, we know:

log[(1-x)/x] = 1

If we then take both sides of the equation as a power of 10:

(1-x)/x = 10^1

and then multiply both sides through by x:

1-x=10x

Solving for x:

1=11x

x=1/11

We can check our answer by inserting it into the original equation:

log(1-x) - log(x) = log[1-(1/11)] - log[1/11]

and using the rule log(A) - log(B) = log(A/B):

log[1-(1/11)] - log[1/11] = log(10/11)-log(1/11)

= log[(10/11)/(1/11)]

= log(10)

= 1

Thus we know x=1/11

JD
Answered by Joshua D. Maths tutor

21936 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.


Find the Cartesian equation of plane Π containing the points A(6 , 2 , 1) and B(3, -1, 1) and perpendicular to the plane Π2 (x + 2y - z - 6 = 0).


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning