Answers>Maths>IB>Article

Find the differential of y=arcsinx

To differentiate we must use implicit differentiation. So: siny=x .Differentiating both sides we get (dy/dx)cosy=1, so (dy/dx)=1/cosy . Using the common identity (sin2(y)+cos2(y)=1) we can rewrite the denominator so we have: (dy/dx)=1/((1-sin2y)(1/2)) we can then substitute sin y with the identity we have in the first line of working: (dy/dx)=1/(1-x2)(1/2)

SG
Answered by Shivum G. Maths tutor

1259 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

In the arthmetic sequence, the first term is 3 and the fourth term is 12. Find the common difference (d) and the sum of the first 10 terms.


Why is there a "+C" term in the solution of every indefinite integral?


Let f(x) = px^2 + qx - 4p, where p is different than 0. Showing your working, find the number of roots for f(x) = 0.


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning