Answers>Maths>IB>Article

Find the differential of y=arcsinx

To differentiate we must use implicit differentiation. So: siny=x .Differentiating both sides we get (dy/dx)cosy=1, so (dy/dx)=1/cosy . Using the common identity (sin2(y)+cos2(y)=1) we can rewrite the denominator so we have: (dy/dx)=1/((1-sin2y)(1/2)) we can then substitute sin y with the identity we have in the first line of working: (dy/dx)=1/(1-x2)(1/2)

SG
Answered by Shivum G. Maths tutor

1356 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

The quadratic function f(x) = p + qx – x^2 has a maximum value of 5 when x = 3. Find the value of p and the value of q.


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning