Answers>Maths>IB>Article

Find the differential of y=arcsinx

To differentiate we must use implicit differentiation. So: siny=x .Differentiating both sides we get (dy/dx)cosy=1, so (dy/dx)=1/cosy . Using the common identity (sin2(y)+cos2(y)=1) we can rewrite the denominator so we have: (dy/dx)=1/((1-sin2y)(1/2)) we can then substitute sin y with the identity we have in the first line of working: (dy/dx)=1/(1-x2)(1/2)

SG
Answered by Shivum G. Maths tutor

1346 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Prove by induction that 7^(8n+3) + 2 is divisible by 5, where n is a natural number.


Integrate x^3 * lnx


A sequence of numbers have the property that x, 12, y, where x > 0, y > 0, form a geometric sequence while 12, x, 3y form an arithmetic sequence. A)If xy = k, find k. B)Find the value of x and y.


Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning