Evaluate the integral \int \frac{x}{x tan(x) + 1} dx using integration by substitution, hence evaluate \int \frac{x}{x cot(x) - 1} dx.

(STEP I 2017, Q1i)For the first part, the hint u = x sin(x) + cos(x) is given. It can be seen that this is the denominator once the fraction is multiplied by cos(x) / cos(x). The answer is ln(x sin(x) + cos(x)) + c.For the second part, there is no hint given, but we can see it must be similar to the previous part. Multiplying the fraction by sin(x) / sin(x) makes the solution clear, to use another substitution, this time u = x cos(x) - sin(x). This will again give a similar answer of - ln(x cos(x) - sin(x)) + c.

SV
Answered by Shreyas V. STEP tutor

844 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Find 100 consecutive natural numbers, each of which is composite


Find all positive integers n such that 12n-119 and 75n-539 are both perfect squares. Let N be the sum of all possible values of n. Find N.


Differentiate x^x


What do integrals and derivatives actually do/mean?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences