Calculate ΔG (in kJ/mol) of the reaction of molecular oxygen and carbon monoxide to produce carbon dioxide. The reaction occurs at 25°C. ΔH = -566 kJ/mol, ΔS = -173 J/K. Based on the result, determine the spontaneity of the reaction.

First we need to write down the chemical equation and balance it: O2 + 2CO -> 2CO2 Given the data, we can calculate ΔG using the following formula: ΔG = ΔH - TΔS However, before we plug in the numbers, we need to make sure that all data are given in correct units: We have to convert temperature into Kelvins: T = 25 + 273 = 298 K The entropy change (ΔS) is given in J/K, but the enthalpy change (ΔH) is given in kJ/mol. Therefore, we have to convert ΔH into J/mol or ΔS into kJ/K. Since the question is asking for ΔG in kJ/mol, it would be sensible to convert ΔS into kJ/K: ΔS = -0.173 kJ/mol Now we can use the formula to calculate ΔG: ΔG = ΔH - TΔSΔG = -566 - 298*(-0.173) ΔG = -514 kJ/mol Given that ΔG is negative, the reaction is exergonic, that is it occurs spontaneously at 25°C.

KM
Answered by Katerina M. Chemistry tutor

4223 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Hydrogen bromide forms a strong acid when dissolved in water whereas hydrogen fluoride forms a weak acid. Distinguish between the terms strong acid and weak acid. State equations to describe the dissociation of each acid in aqueous solution. [3]


Explain why the first ionization energy of sodium is less than that of magnesium?


There are three halogenoalkanes with halogens F, Br and I. Each undergo an SN2 reaction. How does the rate of reaction differ between the three halogenoalkanes?


Explain whether the boiling point of 1-bromopentane will be higher, lower or the same as that of 2-bromo-2-methylbutane. (3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences