In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?

Vector diagram showing an aircraft flying at 200 m/s north with a wind blowing at 50 m/s from west. Therefore the problem involves pythagoras theorem.

So, the Magnitude of the resultant velocity is given by: Vr = squareroot of the addition of (200+ 502) = 210m/s.

The direction of the resultant velocity is given by: Theta = tan-1(opp/adj = 50/200) = 14 degrees.

MP
Answered by Milan P. Physics tutor

14537 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A rocket travels with constant velocity in a straight line in deep space. A ball is thrown from the back to the front (ie from the thrusters to the nose). Describe the path of the ball. Describe the path if the rocket were accelerating along this line.


A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


Why are values for gravitational potential always negative?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences