y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5

The question can be represented by the notation d2y/dx2|x=0.5, meaning the second derivative of y with respect to x resolved at x=0.5. Since y is in the form f(x)/g(x), the quotient rule could be used, but it would be much easier to first simplify y to 3x5 + x4/2, using the index rules (xm/xn = xm-n). Once y is in this form we can easily differentiate both terms with respect to x twice, giving dy/dx = 15x4 + 2x3, and then d2y/dx2 = 60x3 + 6x2. At this point we can substitute in x=0.5, giving d2y/dx2|x=0.5 = 60(0.5)3 + 6(0.5)2 = 9.

OC
Answered by Oscar C. Further Mathematics tutor

4206 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How would you differentiate x^x?


How do you use derivatives to categorise stationary points?


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


Find dy/dx when y=2x^(4)+3x^(-1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences