y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5

The question can be represented by the notation d2y/dx2|x=0.5, meaning the second derivative of y with respect to x resolved at x=0.5. Since y is in the form f(x)/g(x), the quotient rule could be used, but it would be much easier to first simplify y to 3x5 + x4/2, using the index rules (xm/xn = xm-n). Once y is in this form we can easily differentiate both terms with respect to x twice, giving dy/dx = 15x4 + 2x3, and then d2y/dx2 = 60x3 + 6x2. At this point we can substitute in x=0.5, giving d2y/dx2|x=0.5 = 60(0.5)3 + 6(0.5)2 = 9.

OC
Answered by Oscar C. Further Mathematics tutor

4686 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The equation of a curve is y = x^2 - 5x. Work out dy/dx


Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


Solve the following simultanious equations: zy=28 and 2z-3y=13


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning