Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15

If (x-1) is a factor of x3 - 3x2 -13x + 15 then one of the solutions for x must be x = 1.(This is because, if (x-1) is a factor of this equation then it is true that x-1=0, because this is a point where the curve crosses the x axis and therefore is = to 0. Solving x-1=0 gives x=1)Because we know that if (x-1) is a factor of the curve, the equation must equal 0 when x=1, we can just substitute this in as such:(1)3 - 3(1)2 -13(1) + 15= 1 - 3 - 13 + 15= 16 -16 = 0Therefore we can conclude, using the factor theorem that (x-1) is a factor of x3 - 3x2 -13x + 15

JB
Answered by James B. Further Mathematics tutor

3594 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

What is differentiation used for?


f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


Find the stationary point of 3x^2+7x


A curve has equation y = x^2 - 7x. P is a point on the curve, and the tangent to the curve at P has gradient 1. Work out the coordinates of P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences