Use the factor theorem to show that (x-1) is a factor of x^3 - 3x^2 -13x + 15

If (x-1) is a factor of x3 - 3x2 -13x + 15 then one of the solutions for x must be x = 1.(This is because, if (x-1) is a factor of this equation then it is true that x-1=0, because this is a point where the curve crosses the x axis and therefore is = to 0. Solving x-1=0 gives x=1)Because we know that if (x-1) is a factor of the curve, the equation must equal 0 when x=1, we can just substitute this in as such:(1)3 - 3(1)2 -13(1) + 15= 1 - 3 - 13 + 15= 16 -16 = 0Therefore we can conclude, using the factor theorem that (x-1) is a factor of x3 - 3x2 -13x + 15

JB
Answered by James B. Further Mathematics tutor

4431 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


Work out the gradient of the curve y=x^3(x-3) at the point (3,17)


write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning