The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.

From the binomial theorem we know that the x^3 term in the expansion of the above expression must satisfy,
4C3 * (3x)^3 * a = 216x^3.
Hence, after multiplying out we must have,
108a * x^3 = 216x^3
and therefore the value of a must be 2.

AB
Answered by Adam B. Further Mathematics tutor

5620 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

If y=x^3+9x, find gradient of the tangent at (2,1).


find the stationary point of the curve for the equation y=x^2 + 3x + 4


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


Work out the equation of the tangent to the curve y=x^2+5x-8 at the point (2,6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning