Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?

First we will find the gradient of the tangent of the curve at A. So first, we differentiate y with respect to x. We get that dy/dx=2x+5. We can plug in x=-4 to find the gradient of the tangent at A. We get that dy/dx=2(-4)+5=-8+5=-3. We need to take the negative reciprocal of this to get the gradient of the normal at A. Therefore the gradient of the normal at A is -1/-3=1/3. The general equation for this normal is now y=1/3x+C where C is a constant. To find C, we need to plug in the values of (x,y) at A. To find y at A, then we just need to let x=-4 in the equation of the curve, that we are given. y=(-4)^2+5(-4)+8=16-20+8=4. A(x,y) = (-4,4). Plug these points back into the equation of the normal to find C and we will find that C=16/3. Our general equation is now: y=1/3x+16/3. Multiply through by 3 to get that the equation of the normal to the curve at A is: 3y=x+16.

AG
Answered by Aaron G. Further Mathematics tutor

6632 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Factorise 6x^2 + 7x + 2


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


Find the General Second Order Differential Equation Using Substitution (A2 Further Maths)


How do you use derivatives to categorise stationary points?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences