The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.

Two lines are parallel if they have the same gradient. This can be found by looking at the coefficient of x. When the equation is written in the form y=ax+b, with b a constant, the gradient of the line would be a. So for the L1 the gradient is 3. So we want to get L2 in this form as well we rearrange L2, to 3y = 9x - 5, and then divide by 3 to get y = 3x -5/3. So the gradient of L2 is also 3 and therefore both lines are parallel.

JS
Answered by Joe S. Further Mathematics tutor

1605 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


Solve these simultaneous equations: 3xy = 1, and y = 12x + 3


How would I solve the following equation d^2x/dt^2 + 5dx/dt + 6x = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences