Find the coordinates of the minimum point of the function y=(x-5)(2x-2)

At the minimum point the gradient is zero so dy/dx=0. To find dy/dx, first expand out the brackets so y=2x^2 - 12x + 10. Using differentiation dy/dx=4x - 12. At the minimum 4x-12=0 so 4x=12 therefore x=3. Put this back into the original equation to find the y value of the minimum point y=(3-5)(2x3-2)=-8

PC
Answered by Phoebe C. Further Mathematics tutor

1912 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How would you differentiate x^x?


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


Given that xy=2 and y=3x+5, find x and y. Do not use trial and improvement.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences