Find the coordinates of the minimum point of the function y=(x-5)(2x-2)

At the minimum point the gradient is zero so dy/dx=0. To find dy/dx, first expand out the brackets so y=2x^2 - 12x + 10. Using differentiation dy/dx=4x - 12. At the minimum 4x-12=0 so 4x=12 therefore x=3. Put this back into the original equation to find the y value of the minimum point y=(3-5)(2x3-2)=-8

PC
Answered by Phoebe C. Further Mathematics tutor

1945 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How do I determine if a stationary point on a curve is the maximum or minimum?


express z(2+i)=(1+2i)^2 in the form z=x+iy


Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.


The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences