Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.

First compute the derivative of f(x) using the power rule on each term. f(x) = 2x^3 - 12x^2 + 25x - 11 so f'(x) = 6x^2 - 24x + 25. Now complete the square for the derivative. f'(x) = 6 * ((x-2)^2 - 4) + 25 = 6 * (x-2)^2 - 24 + 25 = 6 * (x-2)^2 + 1. Now observe that the first term is >= 0 since it is the result of a square multiplied by the positive constant 6. The second term, 1, is positive. Hence the whole expression is positive for any x. So we've shown that f'(x) > 0 for any x, so the function f(x) is increasing.

MT
Answered by Michael T. Further Mathematics tutor

3671 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


Why does tanx = sinx/cosx ?


Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning