Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.

First compute the derivative of f(x) using the power rule on each term. f(x) = 2x^3 - 12x^2 + 25x - 11 so f'(x) = 6x^2 - 24x + 25. Now complete the square for the derivative. f'(x) = 6 * ((x-2)^2 - 4) + 25 = 6 * (x-2)^2 - 24 + 25 = 6 * (x-2)^2 + 1. Now observe that the first term is >= 0 since it is the result of a square multiplied by the positive constant 6. The second term, 1, is positive. Hence the whole expression is positive for any x. So we've shown that f'(x) > 0 for any x, so the function f(x) is increasing.

MT
Answered by Michael T. Further Mathematics tutor

3114 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How do I determine if a stationary point on a curve is the maximum or minimum?


If y=x^3+9x, find gradient of the tangent at (2,1).


Find the coordinates of the stationary points on the curve y=x^5 -15x^3


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences