A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.

First, we look at the energy of the smaller ball.We know Gravitational potential energy = mgh (m=mass g=9.81 h=height)So we can plug our numbers from the question into the equation to get:GPE=mgh=1x9.81x10=98.1JNow we have the kinetic energy at the bottom of the hill which can be written as:KE=0.5mv^2, which rearranged gives:v=sqrt(2KE/m)=sqrt(298.1/1)=14.01ms^-1So the ball's velocity at the bottom of the hill = 14.01ms^-1Now the second part of the question:We can assume the collision is elastic, so from conservation of momentum we know:m1v1=m2v2, so114.01=5*v (where v is the velocity were looking for), so:v=14.01/5=2.80ms^-1So the 5kg ball moves away with velocity 2.80ms^-1.

TH
Answered by Tim H. Physics tutor

2053 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A kettle is found to output 65J when its input energy is 100J. What is the efficiency of the kettle, and what happens to the rest of the energy?


Why would the National Grid limit the amount of fossil fuels we combust at peak times of energy demand?


What is the difference between nuclear fission and fusion?


What led to the Plum Pudding model being replaced by Rutherford's nuclear model of the atom? (6 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning