A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.

First, we look at the energy of the smaller ball.We know Gravitational potential energy = mgh (m=mass g=9.81 h=height)So we can plug our numbers from the question into the equation to get:GPE=mgh=1x9.81x10=98.1JNow we have the kinetic energy at the bottom of the hill which can be written as:KE=0.5mv^2, which rearranged gives:v=sqrt(2KE/m)=sqrt(298.1/1)=14.01ms^-1So the ball's velocity at the bottom of the hill = 14.01ms^-1Now the second part of the question:We can assume the collision is elastic, so from conservation of momentum we know:m1v1=m2v2, so114.01=5*v (where v is the velocity were looking for), so:v=14.01/5=2.80ms^-1So the 5kg ball moves away with velocity 2.80ms^-1.

TH
Answered by Tim H. Physics tutor

1736 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Why do astronauts feel weightless while in orbit?


Can you explain the different ways heat can travel?


Explain in terms of specific heat capacity why a hot water bottle is good at heating a bed.


A man decides to shoot a rifle whilst on a wheelchair. Explain in terms of conservation of momentum what happens to the man as the shot is fired.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences