Why does magnetic field do no work on an electric charge?

There is a qualitative and a quantitative way to show that the magnetic field does no work on electric charges. The qualitative description requires a picture; essentially, one looks at the circular orbits of moving particles in a magnetic field and notices that the force on the charge is always central (perpendicular to the direction of movement). If the force is central then F.dx is always zero and there can be no work done by the field. Interestingly, this is the case for any central force (e.g. gravity).
Quantitatively, one can prove this statement by looking at the equation describing the force on a charge due to a magnetic field, the lorentz force formula F = q(Ev x B), we can assume no electric field to be present so the equation becomes F = q(v x B). Similarly, the rate of work done can be found to be P = F.thus for forces due to magnetic fields we find P = q(v x B).v. But this is equal to zero because x is perpendicular to both and B, and hence the dot product is zero.

JS
Answered by Jergus S. Physics tutor

2064 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Using Newton's law of gravitation, derive a suitable formula for the escape velocity of an object at Earth's surface.


Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.


Why does an electric drill heat up when passing through metal compared to in thin air?


How might you use sound waves to smash a glass? What are other examples of resonance in everyday life?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences