Why does magnetic field do no work on an electric charge?

There is a qualitative and a quantitative way to show that the magnetic field does no work on electric charges. The qualitative description requires a picture; essentially, one looks at the circular orbits of moving particles in a magnetic field and notices that the force on the charge is always central (perpendicular to the direction of movement). If the force is central then F.dx is always zero and there can be no work done by the field. Interestingly, this is the case for any central force (e.g. gravity).
Quantitatively, one can prove this statement by looking at the equation describing the force on a charge due to a magnetic field, the lorentz force formula F = q(Ev x B), we can assume no electric field to be present so the equation becomes F = q(v x B). Similarly, the rate of work done can be found to be P = F.thus for forces due to magnetic fields we find P = q(v x B).v. But this is equal to zero because x is perpendicular to both and B, and hence the dot product is zero.

JS
Answered by Jergus S. Physics tutor

2656 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?


Which are the types of carrier movements and how are they activated


Explain the difference between forced vibration and resonance in an oscillating object.


If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning