Describe an experiment to determine the spring constant of a spring? Your answer should include any causes of inaccuracy.

A clamp and stand should be used to hold the spring in place. Ensure its parallel to the stand using a ruler, this reduces the effect of random parralax error when measuring extension.Masses should be attached to the bottom of the spring. Increasing masses by equal increments (2, 4, 6, 8, 10.... kg).Before attaching any masses, measure the length of the unloaded spring with a ruler. Note this down.Once the spring is loaded, measure the length of the whole spring using a ruler, from the top of the spring to its bottom. Ensure its parallel to the spring when measuring.Repeat this experiment 3 times, recording the data in a table. (An example of the table can be drawn in your answer, 1 column for incrementally increasing masses, a column next to it of the masses multiplied by acceleration due to gravity for weight, 3 columns after that for (loaded length - unloaded length) for each attached mass, then a column after this for mean values of extension for each mass attached, then one more column for weight divided by mean extension)Mass values must be multipled by acceleration due to gravity, then divided by mean value of extension for each associated mass in question. This gets multiple values of spring constant, which you should then take the mean value.Sources of innacuracy - parallax errors due to not going exactly to the bottom of the spring, the ruler wasnt parralel to the spring. Also, the spring may have surpassed its limit of proportionality, meaning it no longer obeys Hookes Law, this should be able to be seen in results if some spring constants are way off.

AR
Answered by Andrew R. Physics tutor

11107 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A Car of mass 1000kg applies a constant 200N breaking force over a distance of 30m and comes to a complete stop. How fast was the car going the instant the brakes were engaged.


Compare the advantages and disadvantages of the two methods of generating electricity (figure 1 in answer):


A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.


What is the importance of the resultant force in a free-fall question?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences