Show that (π‘₯ βˆ’ 1) is a factor of 𝑓(π‘₯)=2π‘₯^3 + π‘₯^2 βˆ’ 8π‘₯+ 5. Hence fully factorise 𝑓(π‘₯) fully.

For the show that part of the question simply substitute all the π‘₯'s in 𝑓(π‘₯) with 1, as the factor π‘₯ βˆ’ 1 means that π‘₯ - 1 = 0 therefore π‘₯ = 1. Once substituted in solve the equation and show that it is equal to 0 which proves π‘₯ βˆ’ 1 is a factor of the equation.For the second part use synthetic division to factorise the equation, diving 1 into the equation (with a remainder 0) to produce a quadratic equation which then can be solved through standard factoring. The solution is 𝑓(π‘₯) = (π‘₯ βˆ’ 1)(π‘₯ + 2)(π‘₯ βˆ’ 1)

CB
Answered by Charlotte B. β€’ Maths tutor

2391 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers β–Έ

How do I find the dot product of two 3-dimensional vectors


what is 87% of 654


a) Factorise: 2x^2-72, and hence b) find the y-intercept of the line with the equation: y=(2x^2-72)/(4x-24)


If e^(4t) = 6, find an expression for t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

Β© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences