Express the complex number (1+i)/(1-i) in the form x+iy

First of all calculate the complex conjugate of the denominator. The complex conjugate of (1-i) is 1+i.Now multiply the given complex number by (1+i)/(1+i), note that we are not modifying the starting number since we are just multiplying by 1. The product is (1+i)^2/(1-(i)^2), that is (1+i)^2/2. Finally just calculate (1+i)^2=1+2i+(i^2)=2i, thus (1+i)/(1-i)=2i/2=i=0+1*i.

CM
Answered by Claudio M. Further Mathematics tutor

9009 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that G = {1, -1} is a group under multiplication.


Prove that matrix multiplication is not commutative.


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning