How is a PET scanner able to locate a tumour in the patient's body?

The patient is injected with a radioactive isotope with short half-life, for eg Fluorine-18. This isotope decays into positrons. The area damaged with tumour requires more blood supply compared to the healthy cells. Therefore higher concentration of the isotope is transported to the damaged area where the positrons from the isotope interact with naturally occurring electrons in the body to cause annihilation. This electron-positron annihilation leads to production of two gamma rays due to conservation of energy, which travel in opposite direction. These gamma rays are detected by the detectors in a ring around the patient. The computer connected to these detectors calculate the location of the origin of the gamma ray pairs by triangulation.

KD
Answered by Krish D. Physics tutor

3371 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

In an isolated container contains 1kg of ice at 0 oC. 1kg of warm water (323K) is poured into the container. How much ice (in kgs) remains after the system returns to thermal equilibrium? (by the end of the process?)


Draw a graph depicting a skydivers speed against time when jumping from a plane, until he deploys his parachute, explaining the logic of your answer through the forces applicable to the body.


The time taken for a wave to pass a point is 2.5 seconds. What is the frequency of the wave?


If a cricket ball of mass 500g is thrown upwards from the ground with an initial velocity of 20 m/s, how high will the ball reach?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning