An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.

The key word to note in this question is that the expansion is isothermal and that we have a closed system. This means that the expansion must happen at a constant temperature (isothermal), and that the number of particles doesn't change (closed system). For an ideal gas, we can write PV = NKT, however here we know that N (number of particles), K (Boltzmann's constant) and T (temperature) are all constant, and therefore PV = constant. This is known as Boyle's Law. In words, the product of pressure and volume must be constant at all times. This must therefore be true at the beginning and end of the expansion of the ideal gas, and so we can write PiVi = constant = PfVf , where the subscript i denotes the initial values and subscript f denotes the final values. We are after the final pressure Pf, and so by dividing both sides of the above equation by Vf, we get thatPf = (PiVi )/Vf = (105Pa X 1 m3)/2 m3 = 5 x 104 Pa. So the total pressure of the gas has halved due to the volume doubling.

JL
Answered by James L. Physics tutor

3010 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


The mass of the Earth is 6.0x10^24 kg and its radius is 6.4x10^6m, calculate the orbital speed of the moon around the earth, the orbit of the moon is a circle of approximate radius of 60R where R is the radius of the earth and a mass m.


An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.


Explain how fluorescent tubes work


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning