Two railway trucks of masses m and 3m move towards each other in opposite directions with speeds 2v and v respectively. These trucks collide and stick together. What is the speed of the trucks after the collision?

In order to solve this question we need to use the principle of conservation of momentum which states:

The momentum in a closed system remains constant before and after a collision or explosion.

I.E.

momentum before=momentum after

And ingeneral momentum is calculated using: P=mv where P is the momentum, m is the mass of the object, and v is the velocity of the object.

Hence the total momentum before the collision is:

P1+P2

=m x 2v + 3m x -v       NOTE: notice the negative v on the second truck as it is moving in the opposite direction to the first truck

=-mv

After the collision the the trucks stick together so the total mass becomes 4m and the combined trucks move at an unknown speed of v​after

We will solve the equation for conservation of momentum to determine vafter​:

mv=4mvafter

cancelling out the m's:

v=4vafter

and rearranging to make v​after the subject of the equation:

vafter​=0.25v

Which is our final answer.

SW
Answered by Sarah W. Physics tutor

35634 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A guitar string 0.65m long vibrates with a first harmonic frequency of 280Hz. Mary measures 1m of the string and discovers that it weighs 8.0x10^-4 kg. What is the tension in the guitar string?


A car moves from rest and accelerates uniformly at 4m/s/s, how far will it have traveled after 10 seconds?


This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.


A photon has an energy of 1.0 MeV. Calculate the frequency associated with this photon energy. State an appropriate unit in your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning