Show that the matrix A is non-singular for all real values of a

Given: A = [a -5; 2 a+4]. 1) First find the determinant of A using the known formula => det A = a2+ 4a + 10. A singular matrix is one in which it's determinant equals zero (the determinant of a matrix is a number that captures information about the characteristics of the matrix). The roots of the quadratic are complex, so the graph never equals zero/ no real roots. Therefore it must be a non-singular matrix.

Answered by Further Mathematics tutor

7525 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


Why is the integral of 1/sqrt(1-x^2)dx = sin^{-1}(x)?


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences