Show that the matrix A is non-singular for all real values of a

Given: A = [a -5; 2 a+4]. 1) First find the determinant of A using the known formula => det A = a2+ 4a + 10. A singular matrix is one in which it's determinant equals zero (the determinant of a matrix is a number that captures information about the characteristics of the matrix). The roots of the quadratic are complex, so the graph never equals zero/ no real roots. Therefore it must be a non-singular matrix.

Answered by Further Mathematics tutor

7852 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


Find the determinant of matrix M. [3]


How do I solve x^2 + x - 6 > 0 ?


Can you express 3 + 4j in polar form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning