Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)

tanh(x) = ((ex-e-x)/2)/((ex+e-x)/2) 1 - tanh2(x) = 1-((ex-e-x)/(ex+e-x))2  = ((e2x+e-2x+2)-(e2x+e-2x-2))/(ex+e-x)2 = (2ex.2e-x)/(ex+e-x)2 = 4/(ex+e-x)2 = sech2x

CB
Answered by Chris B. Further Mathematics tutor

6851 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


Show that the square of any odd integer is of the form (8k+1)


Given that abc = -37 + 36i; b = -2 + 3i; c = 1 + 2i, what is a?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning