How do I determine if a stationary point on a curve is the maximum or minimum?

If you are comfortable with differentiation. You can take the second derviatve of the equation of the cruve and plug in the x value of the curve. Based on this answer you can determine if it's a maximum, minimum or stationary. A maximum would have a negative value, a minimum a positive and stationary 0. If however you are not comfortable with this method and cannot memorize the different cases you can always substitute a point slightly before and after the point you're interested in. For example if you're considering x =3. You can subsitute 2.5 and 3.5 into your derivative and based on the signs draw a diagram representing the shape of the curve.

ES
Answered by Eryk S. Further Mathematics tutor

2085 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


Find any stationary points in the function f(x) = 3x^2 + 2x


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning