The charge that flows through the shower in 300 seconds is 18000C. The electric shower has a power of 13.8 kW. Calculate the resistance of the heating element in the shower.

Firstly, we want to define what information we know from the question: ∆Q = 18000C; ∆t = 300s, P = 13.8kW
Therefore, to calculate the resistance we can use the power equation, P=I2R, and calculate the current from: change in charge/change in time.
Current, I = ∆Q /∆t Substituting into this equation the known values: I = 18000/300 = 60A
Now, using the power equation: P = 13800 = (602)R Rearranging this to calculate resistance, R = 13800/3600 = 3.83 Ohms

BH
Answered by Beth H. Physics tutor

7749 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

explain the relationship between resistance and voltage in a filament lamp


How do you calculate efficiency?


Simon's car has run out of fuel. He must push his car 5 metres to the petrol pump, using a force of 200N. How much work does Simon do?


A kettle requires 2400 Coulombs of charge to pass through its heating element, with a resistance of 6 Ohms, in a time of 200 seconds in order to boil the water inside it. Calculate the current flowing and the power of the kettle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning