The charge that flows through the shower in 300 seconds is 18000C. The electric shower has a power of 13.8 kW. Calculate the resistance of the heating element in the shower.

Firstly, we want to define what information we know from the question: ∆Q = 18000C; ∆t = 300s, P = 13.8kW
Therefore, to calculate the resistance we can use the power equation, P=I2R, and calculate the current from: change in charge/change in time.
Current, I = ∆Q /∆t Substituting into this equation the known values: I = 18000/300 = 60A
Now, using the power equation: P = 13800 = (602)R Rearranging this to calculate resistance, R = 13800/3600 = 3.83 Ohms

BH
Answered by Beth H. Physics tutor

7146 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What does a velocity-time graph represent?


Ultrasound is used to scan unborn babies but X-rays are not used to scan unborn babies.


Define electric current


Explain the process of nuclear fusion in the Sun.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences