The charge that flows through the shower in 300 seconds is 18000C. The electric shower has a power of 13.8 kW. Calculate the resistance of the heating element in the shower.

Firstly, we want to define what information we know from the question: ∆Q = 18000C; ∆t = 300s, P = 13.8kW
Therefore, to calculate the resistance we can use the power equation, P=I2R, and calculate the current from: change in charge/change in time.
Current, I = ∆Q /∆t Substituting into this equation the known values: I = 18000/300 = 60A
Now, using the power equation: P = 13800 = (602)R Rearranging this to calculate resistance, R = 13800/3600 = 3.83 Ohms

BH
Answered by Beth H. Physics tutor

7072 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

If a student uses an electric kettle connected to a 230V mains power supply, with a heating power of 1.8kW. Assuming negligable losses, answer the following: a) find the current in the kettle b) find the total energy transferred in 2 minutes of operation


When a toothbrush is charging, p.d. across the primary coil is 230 V, p.d. across the secondary coil is 7.2 V. The primary coil in the charging base has 575 turns of wire on its coil. Find the number of turns on the secondary coil inside the toothbrush.


Does kinetic friction always oppose the direction of motion?


How does current travel in a parallel circuit?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences