A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?

This problem should be split into two parts, the time it takes the ball to reach its maximum point, and the time it takes it to fall to the ground from the maximum point.part 1) We can calculate the balls initial vertical velocity by using trig and applying the knowledge that at its maximum height, a projectiles vertical velocity is 0, giving us;tan(30) = Vy/20 which can be rearranged to find Vy (the initial velocity in the vertical direction)We can then use V = u +at, setting v to 0 and a to g to find the time it takes the ball to reach this maximum point, t1part 2) Next we have to find the time it takes the ball to drop down from the maximum point, we can work out how much higher the max point is above the height the ball was kicked from by using s = ut +(1/2)at^2, the total height the ball achieves is this distance s + 20m. We can then solve s + 20 = (1/2)at^2 for t to find t2.Finally we simply add the two times together to get the time for the whole journey of the ball.

PK
Answered by Patryk k. Physics tutor

2726 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What's the difference between Potential Difference and Electromotive Force


What velocity should your boat have if you want to cross a 72m wide river in 6s by the shortest distance, with a 5 m/s downstream current?


find and symplify the following. Integrate ( 2x^5 - 1/(4x^3)- 5 )dx


When catching a ball, a cricketer moves his hands for a short distance in the direction of travel of the ball as it makes contact with his hands. Explain why this technique results in less force being exerted on the cricketer's hands


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences