A curve has the equation (5-4x)/(1+x)

Start by looking for intercepts.x=0, y= 5. Therefore the curve crosses the y axis at y=5y=0, x= 5/4these are the only two intercepts. Now look for asymptotes.3. at x= 1, y becomes undefined, looking at either side of x= 1. As x tends towards 1 from the positive direction y tends towards positive infinity. As x tends towards 1 from the negative direction, y tends towards negative infinity.4. As x tends towards infinity we can split out the equation. y= 5/(1+x) - 4x/(1+x). As x grows larger, y 5/(1+) becomes smaller, and -4x/(1+x) tends towards -4x/x = -4. Therefore as x tends towards infinity, y tends towards -4. Together this permits us to draw out the sketch of the equation.

HH
Answered by Henry H. Further Mathematics tutor

1956 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


How to solve a standard first order differential equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning