A curve has the equation (5-4x)/(1+x)

Start by looking for intercepts.x=0, y= 5. Therefore the curve crosses the y axis at y=5y=0, x= 5/4these are the only two intercepts. Now look for asymptotes.3. at x= 1, y becomes undefined, looking at either side of x= 1. As x tends towards 1 from the positive direction y tends towards positive infinity. As x tends towards 1 from the negative direction, y tends towards negative infinity.4. As x tends towards infinity we can split out the equation. y= 5/(1+x) - 4x/(1+x). As x grows larger, y 5/(1+) becomes smaller, and -4x/(1+x) tends towards -4x/x = -4. Therefore as x tends towards infinity, y tends towards -4. Together this permits us to draw out the sketch of the equation.

HH
Answered by Henry H. Further Mathematics tutor

1999 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?


What are the different forms of complex numbers and how do you convert between them?


Find the determinant of matrix M. [3]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning