A curve has the equation (5-4x)/(1+x)

Start by looking for intercepts.x=0, y= 5. Therefore the curve crosses the y axis at y=5y=0, x= 5/4these are the only two intercepts. Now look for asymptotes.3. at x= 1, y becomes undefined, looking at either side of x= 1. As x tends towards 1 from the positive direction y tends towards positive infinity. As x tends towards 1 from the negative direction, y tends towards negative infinity.4. As x tends towards infinity we can split out the equation. y= 5/(1+x) - 4x/(1+x). As x grows larger, y 5/(1+) becomes smaller, and -4x/(1+x) tends towards -4x/x = -4. Therefore as x tends towards infinity, y tends towards -4. Together this permits us to draw out the sketch of the equation.

HH
Answered by Henry H. Further Mathematics tutor

1679 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)


What is a complex number?


By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


Solve the equation 2(Sinhx)^2 -5Coshx=5, giving your answer in terms of natural logarithm in simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences