Explain why for heavy nuclei there is imbalance in the number of protons and neutrons. Give reference to the range and particle type of the forces that influence this imbalance.

In the nucleus the forces that govern how the body is kept together is the Strong Nuclear Force and the Electromagnetic Force, these two force differ in range and the type of particle they interfere with. The Strong Nuclear Force affects baryons and as such both protons and neutrons are bound when they are within the range dominated by the force, this is around 3fm. If these nucleons are bound closer than 0.8fm thy will feel repulsion, the result of this means that the nucleus cannot collapse in on itself and that the nucleons may only be tightly bound to a degree. Protons and neutrons are bound in the nucleus governed by the Strong Nuclear Force, instability arises from the Electromagnetic Force governing proton-proton interactions, causing repulsion. The neutral charged neutrons do not feel the Electromagnetic force, which acts across the whole of the nucleus and are as such unaffected by the force. In order for a large nucleus to be stable fewer protons are required to reduce the repulsion in the nucleus and ensure its stability.

Answered by Physics tutor

2676 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Ignoring air resistance, use an energy argument to find the speed of a ball when it hits the ground if it is dropped from 50m, where m is the mass of the ball.


a ball is dropped from rest off a cliff of height 50m, determine the final velocity of the ball assuming no air resistance.


A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


How does a cyclotron work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences