For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.

The key equation to this question is the energy transfer equation of Q = mcT. Q represents the amount of energy put into the system, m is the mass of the object we're talking about in kg, c is its specific heat capacity, and T is the change in temperature of the object in degrees celsius. The specific heat capacity can be thought of as how much energy is required to increase 1kg of an object by 1 degree celsius. Now to solve this equation. We don't know the mass of the liquid but we can find it out by multiplying its volume by its density, and so then putting this and the other provided information into the equation we get: Q = (0.1*1)20004 = 800J. Notice how I used 2000 in this equation, not 2, as the specific heat capacity was given in terms of kJ and the answer was in J.

HW
Answered by Henry W. Physics tutor

1593 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State similarity and difference between the electric field lines and the gravitational field lines around an isolated positively charged metal sphere.


How does having a rotating plate in a microwave help food to be heated eavenly?


A satellite is in a stationary orbit above a planet of mass 8.9 x 10^25 kg and period of rotation 1.2 x 10^5 s. Calculate the radius of the satellite's orbit from the centre of the planet.


Imagine a ball rolls off a set of stairs with horizontal velocity, u; the stairs have a height, h and length of l. Find a formula for which step the ball will hit, n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences