A rollercoaster carriage of mass 100kg has 45kJ of Kinetic Energy at the lowest point of its ride. Ignoring air resistance and friction between the wheels and the tracks, what is the maximum height above this point it could reach? [Take g as 10m/s/s)

[A useful tip: always start by drawing a diagram!!]This question is asking you to apply conservation of energy, i.e. at the highest point it can reach above the lowest point, all of this Kinetic Energy will have been transferred to Gravitational Potential Energy. This requires use of the equations KE=GPE and GPE=mgh, where m is the mass (in kg), g is the acceleration due to gravity (in m/s/s) and h is the maximum height above the lowest point (in m). All units of energy must be in J for these equations to give the right answers.To get the height, rearrange the equations to give h=KE/mg, or rather h=45000/(100x10)=45m(Note: the question gave the energy in kJ, so the number had to be multiplied by 1000 to give it in J, which gave the height in m) 

RW
Answered by Ross W. Physics tutor

3767 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A sound wave has a frequency of 500 Hz. The sound wave has a wavelength of 0.34 m in air. Calculate the speed of the sound wave in air?


How do we know about the structure of the atom?


A car driver has to make an emergency stop. The braking distance depends on the speed of the car. For the same braking force, what happens to the braking distance if the speed doubles?


What is the difference between Transverse and Longitudinal waves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning