write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions

We can write this sum S as Re(e^ix+e^2ix+...+e^nix), we now have a finite geometric series, which we know the formula for.Have, S = Re( e^ix(1-e^inx)/(1-e^ix)) - Now factoring numerator and denominator to look like complex formula for sine function we get,S = Re( e^ixe^inx/2(e^-inx/2-e^inx/2)/(e^ix/2(e^-ix/2-e^ix/2))) = Re(e^i(n/2+1/2)xsin(nx/2)/sin(x/2))Now since n is an integer and x is an element of the reals taking the real part gives,S = sin(nx/2)cos(((n+1)/2)x)/sin(x/2)

Answered by Further Mathematics tutor

4532 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let f(x)=x^x for x>0, then find f'(x) for all x>0.


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences