If a cricket ball of mass 500g is thrown upwards from the ground with an initial velocity of 20 m/s, how high will the ball reach?

The best method of answering this question would be to look at the energy of the ball at the moment it is thrown and at the moment it reaches its highest point.
When the ball is thrown, initially all the energy is kinetic. We can calculate the ball's kinetic energy using KE = 0.5mv2  where m is the mass and v the velocity.
Using this equation we find:
KE = 0.50.5202 - the ball's mass must be in kg, hence 0.5 instead of 500
KE = 100J - remember units!
Now let's think about the ball at its highest point. At this moment, the ball will have stopped moving, and all its kinetic energy will have been converted into gravitational potential energy. This agrees with the law of conservation of energy.
Therefore the ball will have 100J of gravitational potential energy.
Using the equation for GPE, we can work out the height the ball has reached.
GPE = mgh where g is the gravitational acceleration on earth (roughly 10gms-2) and h is the height
100 = 0.510h
h = 20m

TC
Answered by Thomas C. Physics tutor

12922 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A bullet is fired horizontally from a rifle 1.5m from the ground at 430m/s. How far does it travel and for how long does it travel before it hits the ground?


A student investigated how the resistance of a piece of nichrome wire varies box with length.Describe how the student would obtain the data needed for the investigation. Your answer should include a risk assessment for one hazard in the investigation.


How much thermal energy does a 1 kg steel block with a specific heat capacity of 450 J/kg°C lose when it cools from 400°C to 60°C?


A transformer has an input voltage of 4V, an output voltage of 8V and 50 turns on its primary coil. Assuming 100% efficiency, find the number of turns on the secondary coil.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning