At 25 °C, the initial rate of reaction is 3.1 × 10−3 mol dm−3 s−1 when the initial concentration of C is 0.48 mol dm−3 and the initial concentration of D is 0.23 mol dm−3 . Calculate a value for the rate constant at this T when rate = k [C][D].

The rate equation is given. So the first step is rearranging it to make the rate constant k the subject of the equation, by dividing both sides by [C][D]. k = (rate/[C][D]) now plug in the values given in the questions to find the numerical answer k = 3.1x10-3/(0.48 x 0.23) = 2.8 x 10-2 this is the numerical value correct to 2 significant figures ( be careful with the number of significant figures in the answer, if every value given in the question is given to 2 s.f., the result cannot be given accurately to more than 2 s.f.) now insert to the same equation corresponding units to find the units of the rate equation. k= mol dm-3 s-1/ (mol dm-3 x mol dm-3 )=mol–1 dm3 s –1 

Answered by Krystof C. Chemistry tutor

2010 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Can you state and explain the chemistry behind Markovnikov's rule?


What is the difference between an aldehyde and a ketone, and what type of molecule can they each be reduced to?


What are 3 characteristics of Benzene that go against the proposed Kekule model?


Explain the principle behind chemically reactive and inert molecules


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy