A bowling ball is thrown into the alley, having velocity of 3 ms^-1 at the start of the bowling alley. It decelerates at a constant rate, before hitting the skittles at 2 ms^-1 after 4 s A) calculate the acceleration of the ball.

A)  acceleration (m/s2) = change in velocity (m/s) / time (s) 
A) -1.0 ms-1 / 4 s = -0.25 ms-2
B) Calculate the displacement the ball travelled before hitting the skittles and hence calculate the average velocity of the ball
d = 1/2 ( Vf + Vi ) × t = 0.5 x (3 + 2) ms -1 x 4 s = 10 m
Average velocity = distance / time = 10 m / 4 s = 2.5 m s-1
C) Finally, as the bowling ball weighs 10 kg, calculate the momentum with which it hits the skittles.
 momentum (kgm/s) = mass (kg) x velocity (m/s) = 10 kg x 2 ms-1 = 20 kg ms-1

AN
Answered by Alexander N. Physics tutor

2129 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Define the Specific Heat Capacity of a material. What is its unit?


What are the three major radiations experienced by heavy unstable nuclei, and how does the penetrating power compare for each?


Describe the transfers of energy occurring when a ball is thrown vertically up in the air and falls back down to Earth, assuming there is no friction from the air.


What is a Sankey diagram and how do we use it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences