Work out the gradient of the curve y=x^3(x-3) at the point (3,17)

First simplify the equation of the curve y= x^4 - 3x^3 .The gradient is the differential.To differentiate, bring down the power and take one from it.x^4 becomes 4x^3-3x^3 becomes (-3x3)= -9x^2dy/dx= 4x^3 - 9x^2Coordinates are written in (x,y) form. Hence x=3.Gradient at x=3 = 4x^3 - 9x^2 = 4(3^3) - 9(3^2) = 108 - 81 = 27

SM
Answered by Sophie M. Further Mathematics tutor

3664 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


If y=x^3+9x, find gradient of the tangent at (2,1).


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning