Work out the gradient of the curve y=x^3(x-3) at the point (3,17)

First simplify the equation of the curve y= x^4 - 3x^3 .The gradient is the differential.To differentiate, bring down the power and take one from it.x^4 becomes 4x^3-3x^3 becomes (-3x3)= -9x^2dy/dx= 4x^3 - 9x^2Coordinates are written in (x,y) form. Hence x=3.Gradient at x=3 = 4x^3 - 9x^2 = 4(3^3) - 9(3^2) = 108 - 81 = 27

SM
Answered by Sophie M. Further Mathematics tutor

3478 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Find and describe the stationary points of the curve y = x^2 + 2x - 8


Let y = (4x^2 + 3)^4. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning