Explain why transition metal complexes are coloured?

In a complex transition metal ion, the electric field produced by the lone pairs on ligands when they interact with the central metal ion causes the d orbitals to split into two sub levels. As the dx2-y2 and dz2 have electron density on the axis, they interact more with the ligand electric field and are split to a higher energy than the other 3 orbitals.
The energy difference between the two sub levels is referred to as delta E.When a photon of light is absorbed by the complex, a photon of light of the complementary colour is transmitted, this is the colour that is observed. The light that is absorbed is used to promote an electron to the higher energy sub level.
The higher the energy of the light absorbed, the shorter the wavelength. Therefore if high energy light is absorbed, long wavelength light is transmitted (colour is towards the red end of the spectrum). If lower energy light is absorbed, short wavelength light is transmitted (colour is towards the blue/violet end of the spectrum).

Answered by Chemistry tutor

2936 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Why is there a significant difference between the radii of first and second row transition metals, where as no difference (or even a decrease) is observed between the second and third rows?


Why do melting points decrease down the group 1 and increade down the group 7? (core syllabus: Periodicity)


Sodium hydroxide reacts with phosphoric(V) acid according to the equation: 3NaOH + H3PO4 -> Na3PO4 + 3H2O 25.00 cm3 of 0.10 mol dm-3 sodium hydroxide reacts with 0.05 mol dm-3 H3PO4. The volume of H3PO4, in cm3, required for neutralisation is?


Sort the following substances MgO, Na, H2O, H2S, NaCl, in the order of increasing melting temperature.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning