What is De Moivre's theorem?

In complex number ( especially for any real number) x and integer n it holds that

(cos(x) + i(sinx))^n = cos(nx) + isin(nx) where i is the imaginary unit representing as i*i = -1.

This is called  De Moivre's theorem.

This theorem can be proved by Euler's theorem which states 

e^(i*x) = cos(x) + isin(x)

then

(e^(i*x))^n = (cos(x) + isin(x))^n which equals to

e^(ixn) = cos(nx) + isin(nx)

resulting to

 (cos(x) + isin(x))^n = cos(nx) + isin(nx)

BS
Answered by BARUN S. Further Mathematics tutor

12617 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


Prove by induction that the sum from r=1 to n of (2r-1) is equal to n^2.


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning