find general solution to: x(dy/dx) + 2y = 4x^2

Divide through by x so:      (dy/dx) +2(y/x) = 4x

Now multiply through by the intergrating factor:  e^(| (2/x) dx) = e^(2.ln(x)) = x^2

so you get:     (x^2)(dy/dx) + 2xy = 4(x^3)

Now integrate the entire equation and you get:        y(x^2) = |(4(x^3))dx = (x^4) + c

Divide through by (x^2) to get the general solution:

y = (x^2) + 4/(x^2)

MP
Answered by Matthew P. Further Mathematics tutor

16125 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that matrix multiplication is not commutative.


Evaluate (1 + i)^12


(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning