How do you prove Kepler's Third Law?

For starters, what exactly is Kepler's Third Law?

Kepler's Third Law states that the square of the time period of orbit is directly proportional to the cuber of the semi-major axis of that respective orbit. (the semi-major axis for a circular orbit is of course the radius) Mathematically this can be represented as: T2 / r3 = k where k is a constant. The value k is related to physical constants such that k = 4pi2/GM where G is the gravitational constant and M the mass of the object at the centre of the orbit (NOT the object doing the orbiting!)

 

How did Kepler arrive at this result? Unfortunately, through experiment, which is not particularly convenient for us, but, thankfully we have knowledge Kepler had not! 

 

The result can be obtained surprisingly easily, assuming we have the necessary tools. 

We will need the following four equations:

Circular Motion: a = v2/r; v = wr = 2pi/T

Gravitational attraction: F = GMm/r2 

Newton's Second Law: F = ma

 

Substituting circular motion and gravitational attraction into the above formula yields:

mv2/r = Gmm/r2 

Cancelling the m's multiplying by r and by GM gives:

v2/GM = 1/r

This is very close to the result we want, one more substitution should give us the desired equation. Notice that v = wr = 2rpi/T from circular motion equations.

And so we have:

4pi2/GMT= 1/r3

Multiplying by T2:

T2/r= 4pi2/GM as required!

DB
Answered by Daniel B. Physics tutor

76858 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two pellets are fired simultaneously from the horizontal, one is fired vertically at 100m/s and the other is fired at 200m/s at an angle theta from the horizontal. Calculate the angle of the second pellet if they both land at the same time.


How does the angle of an inclined plane relate to its efficiency, given the coefficient of friction between a body and the plane?


3 resistors, R1, R2 and R3 are attached in parallel across a 6V cell with resistances 3, 4 and 5 Ohms respectively. Calculate the current across each resistor.


Using Fermat's Principle explain why it makes sense for light be refracted when crossing from one medium into another that has a different refractive index.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning