How do buffers work?

What is a buffer?

A buffer is a solution that resists a change in pH when small amounts of acid or base are added. It is composed of either a weak acid or a weak base with its respective salt.

What's going on in the buffer?

For clarity, let's use the example ethanoic acid and sodium ethanoate.

CH3COOH (aq) ⇌ CH3COO- (aq) + H+ (aq) (1)

CH3COO-Na+ (aq) ⇌ CH3COO- (aq) + Na+ (aq) (2)

The acid and its salt partially and reversibly dissociate, creating the above equilibriums.

What is the concentration of the buffer?

[H+] = (Ka[CH3COOH]) / [CH3COO-Na+]

pH = - log([H+])

Note:

[acid] = mol. acid / V

[salt] = mol.salt / V

V = the total volume and so:

[acid] / [salt] = mol. acid / mol. salt

Therefore, [H+] = (Ka(mol. CH3COOH)) / (mol. CH3COO-Na+)

Adding acid

The H+ ions react with the CH3COO- ions.

CH3COOH (aq) ⇌ CH3COO- (aq) + H+ (aq) (1)

Equilibrium pushed , increasing [CH3COOH].

CH3COO-Na+ (aq) ⇌ CH3COO- (aq) + Na+ (aq) (2)

Equilibrium pushed , decreasing [CH3COO-Na+]

As all stoichiometric ratios are 1:1 and total volume is constant:

[H+] = (Ka(mol. CH3COOH + x)) / (mol. CH3COO-Na+ - x)

where x is the number of moles of acid added. As this is a small number, there is only a negligible change in pH = - log ([H+])

Adding a base

The alkali neutralises the acid.

CH3COOH (aq) ⇌ CH3COO- (aq) + H+ (aq) (1)

Equilibrium pushed , decreasing [CH3COOH].

CH3COO-Na+ (aq) ⇌ CH3COO- (aq) + Na+ (aq) (2)

Equilibrium pushed , increasing [CH3COO-Na+]

As all stoichiometric ratios are 1:1 and total volume is constant:

[H+] = (Ka(mol. CH3COOH - x)) / (mol. CH3COO-Na+ + x)

where x is the number of moles of acid added. As this is a small number, there is only a negligible change in pH = - log ([H+])

Note:

Ka = acid dissociation constant

[X] = concentration of X

mol. x = moles of x

and log = logarithm base 10

DD
Answered by Daisy D. Chemistry tutor

4068 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is the definition of structural isomerism and what are the different types?


Explain the principle behind chemically reactive and inert molecules


Why do branch chained isomers have lower boiling point than straight chain equivalents?


How many peaks would you expect from a Hydrogen NMR of Ethane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning